The jing and ras1 pathways are functionally related during CNS midline and tracheal development
نویسندگان
چکیده
The Drosophila jing gene encodes a zinc finger protein required for the differentiation and survival of embryonic CNS midline and tracheal cells. We show that there is a functional relationship between jing and the Egfr pathway in the developing CNS midline and trachea. jing function is required for Egfr pathway gene expression and MAPK activity in both the CNS midline and trachea. jing over-expression effects phenocopy those of the Egfr pathway and require Egfr pathway function. Activation of the Egfr pathway in loss-of-function jing mutants partially rescues midline cell loss. Egfr pathway genes and jing show dominant genetic interactions in the trachea and CNS midline. Together, these results show that jing regulates signal transduction in developing midline and tracheal cells.
منابع مشابه
The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development.
The Drosophila single-minded and trachealess bHLH-PAS genes control transcription and development of the CNS midline cell lineage and tracheal tubules, respectively. We show that Single-minded and Trachealess activate transcription by forming dimers with the Drosophila Tango protein that is an orthologue of the mammalian Arnt protein. Both cell culture and in vivo studies show that a DNA enhanc...
متن کاملA Comparison of Midline and Tracheal Gene Regulation during Drosophila Development
Within the Drosophila embryo, two related bHLH-PAS proteins, Single-minded and Trachealess, control development of the central nervous system midline and the trachea, respectively. These two proteins are bHLH-PAS transcription factors and independently form heterodimers with another bHLH-PAS protein, Tango. During early embryogenesis, expression of Single-minded is restricted to the midline and...
متن کاملDrosophila hedgehog signaling and engrailed-runt mutual repression direct midline glia to alternative ensheathing and non-ensheathing fates.
The Drosophila CNS contains a variety of glia, including highly specialized glia that reside at the CNS midline and functionally resemble the midline floor plate glia of the vertebrate spinal cord. Both insect and vertebrate midline glia play important roles in ensheathing axons that cross the midline and secreting signals that control a variety of developmental processes. The Drosophila midlin...
متن کاملGlial and neuronal functions of the Drosophila homolog of the human SWI/SNF gene ATR-X (DATR-X) and the jing zinc-finger gene specify the lateral positioning of longitudinal glia and axons.
Neuronal-glial communication is essential for constructing the orthogonal axon scaffold in the developing Drosophila central nervous system (CNS). Longitudinal glia (LG) guide extending commissural and longitudinal axons while pioneer and commissural neurons maintain glial survival and positioning. However, the transcriptional regulatory mechanisms controlling these processes are not known. Pre...
متن کاملControl of midline glia development in the embryonic Drosophila CNS
The midline glial cells are required for correct formation of the axonal pattern in the embryonic ventral nerve cord of Drosophila. Initially, six midline cells form an equivalence group with the capacity to develop as glial cells. By the end of embryonic development three to four cells are singled out as midline glial cells. Midline glia development occurs in two steps, both of which depend on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 121 شماره
صفحات -
تاریخ انتشار 2004